Land-Air Interactions over Urban-Rural Transects Using Satellite Observations: Analysis over Delhi, India from 1991-2016
نویسندگان
چکیده
Over the past four decades Delhi, India, has witnessed rapid urbanization and change in land use land cover (LULC) pattern, with most of the cultivable areas and wasteland being converted into built-up areas. Presently around 40% land is under built-up area, a drastic rise of 30% from 1977. The effect of changing LULC, at a local scale, on various variables-land surface temperature (LST), normalized difference vegetation index (NDVI), emissivity, albedo, evaporation, Bowen ratio, and planetary boundary layer (PBL) height, from 1991–2016, is investigated. To assess the spatio-temporal dynamics of land-air interactions, we select two different 100 km transects covering the NE-SW and NW-SE expanse of Delhi and its adjoining areas. High NDVI and emissivity is found for regions with green cover and drastic reduction is noted in built-up area clusters. In both of the transects, land surface variations manifest itself in patterns of LST variation. Parametric and non-parametric correlations are able to statistically establish the land-air interactions in the city. NDVI, an indirect indicator for LULC classes, significantly helps in understanding the modifications in LST and ultimately air temperature. Significant, strong positive relationships exist between skin temperature and evaporation, skin temperature and PBL height, and PBL height and evaporation, providing insights into the meteorological changes that are associated with urbanization.
منابع مشابه
A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest
Traditional studies of urban climate used air temperature observations from local urban/rural weather stations in order to analyze the general pattern of higher temperatures in urban areas compared with corresponding rural regions, also known as the Urban Heat Island (UHI) effect. More recently, satellite remote sensing datasets of land surface temperature have been exploited to monitor UHIs. W...
متن کاملDeveloping an Index to Measure Urban Heat Island Effect Using Satellite Land Skin Temperature and Land Cover Observations
A new index of calculating the intensity of urban heat island effects (UHI) for a city using satellite skin temperature and land cover observations is recommended. UHI, the temperature difference between urban and rural regions, is traditionally identified from the 2-m surface air temperatures (i.e., the screen-level temperature T2m) measured at a pair of weather stations sited in urban and rur...
متن کاملMonitoring of SO2 column concentration over Iran using satellite-based observations during 2005-2016
For the first time, sulfur dioxide concentration was monitored between 2005 and 2016 over Iran which is among the countries with a high SO2 emission rate in the world. To that end, SO2 column concentration at Planetary Boundary Layer (PBL) from Ozone Monitoring Instrument (OMI) was analyzed. OMI is a sensor onboard the Aura satellite which can measure daily SO2 concentration on the global scale...
متن کاملHigh ozone at rural sites in India
Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract Past observations of O 3 at urban, rural and lower free tropospheric sites in India have shown generally low values rarely exceeding 60 ppbv. We show that this can not be generated to all over India. Surface ozone (O 3) concentrations are obtained from me...
متن کاملEstimation of land surface temperature over Delhi using Landsat-7 ETM+
Land surface temperature (LST) is important factor in global change studies, in estimating radiation budgets in heat balance studies and as a control for climate models. The knowledge of surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change, and human-environment interactions. In the study an attempt has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017